Protective effects of manganese(II) chloride on hyaluronan degradation by oxidative system ascorbate plus cupric chloride

نویسندگان

  • Katarína Valachová
  • Grigorij Kogan
  • Peter Gemeiner
  • Ladislav Šoltés
چکیده

The degradation of several high-molar-mass hyaluronan samples was investigated in the presence of ascorbic acid itself and further by an oxidative system composed of ascorbic acid plus transition metal ions, i.e. Fe(II) or Cu(II) ions. The latter oxidative system imitates conditions in a joint synovial fluid during early phase of acute joint inflammation and can be used as a model for monitoring oxidative degradation of hyaluronan under pathophysiological conditions. The system Cu(II) plus ascorbate (the Weissberger oxidative system) resulted in a more significant decrease of hyaluronan molar mass compared to the oxidative system Fe(II) plus ascorbate. Addition of manganese(II) chloride was found to decrease the rate of the oxidative damage of hyaluronan initiated by ascorbate itself and by the Weissberger system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free-radical degradation of high-molar-mass hyaluronan induced by ascorbate plus cupric ions: evaluation of antioxidative effect of cysteine-derived compounds.

Based on our previous findings, the present study has focused on free-radical-mediated degradation of the synovial biopolymer hyaluronan. The degradation was induced in vitro by the Weissberger's system comprising ascorbate plus cupric ions in the presence of oxygen, representing a model of the early phase of acute synovial joint inflammation. The study presents a novel strategy for hyaluronan ...

متن کامل

Free-radical degradation of high-molar-mass hyaluronan induced by ascorbate plus cupric ions: testing of stobadine and its two derivatives in function as antioxidants.

Stobadine·2HCl and its two hydrophilic derivatives SM1dM9dM10·2HCl and SME1i-ProC2·HCl were tested in the function of antioxidants on hyaluronan (HA) degradation induced by the Weissberger oxidative system [ascorbate plus Cu(II)]. As a primary method, rotational viscometry was applied, where the substance tested was added before or 1 h after the initiation of HA degradation. The most effective ...

متن کامل

Degradation of high-molar-mass hyaluronan by an oxidative system comprising ascorbate, Cu(II), and hydrogen peroxide: inhibitory action of antiinflammatory drugs--naproxen and acetylsalicylic acid.

Changes in dynamic viscosity of the solutions of a high-molar-mass hyaluronan (HA) were monitored using a rotational viscometer. The degradative conditions generated in the HA solutions by a system comprising ascorbate plus Cu(II) plus H(2)O(2) were studied either in the presence or absence of a drug--naproxen or acetylsalicylic acid. Continual decrease of the dynamic viscosity of HA solution w...

متن کامل

Degradation of high-molar-mass hyaluronan and characterization of fragments.

A sample of high-molar mass hyaluronan was oxidized by seven oxidative systems involving hydrogen peroxide, cupric chloride, ascorbic acid, and sodium hypochlorite in different concentrations and combinations. The process of the oxidative degradation of hyaluronan was monitored by rotational viscometry, while the fragments produced were investigated by size-exclusion chromatography, matrix-assi...

متن کامل

Degradation of high-molecular-weight hyaluronan by hydrogen peroxide in the presence of cupric ions.

Dynamic viscosity (eta) of the high-molecular-weight hyaluronan (HA) solution was measured by a Brookfield rotational viscometer equipped with a Teflon cup and spindle of coaxial cylindrical geometry. The decrease of eta of the HA solution, indicating degradation of the biopolymer, was induced by a system containing H2O2 alone or H2O2 plus CuCl2. The reaction system H2O2 plus CuCl2 as investiga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2010